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Abstract
Modern material design involves a close collaboration between experimental and computational
materials scientists. To be useful, the theory must be able to accurately predict the stability and
properties of new materials, describe the physics of the experiments, and be applicable to new
and complex structures—the all-electron full-potential linearized augmented plane wave
(FLAPW) is one such method that provides the requisite level of numerical accuracy, albeit at
the cost of complexity. Technical aspects and modifications related to the choice of basis
functions (energy parameters, core–valence orthogonality, extended local orbitals) that affect
the applicability and accuracy of the method are described, as well as an approach for obtaining
k-independent matrix elements. The inclusion of external electric fields is illustrated by results
for the induced densities at the surfaces of both magnetic and non-magnetic metals, and the
relationship to image planes and to nonlinear effects such as second harmonic generation. The
magnetic coupling of core hole excitations in Fe, the calculation of intrinsic defect formation
energies, the concentration-dependent chemical potentials, entropic contributions, and the
relative phase stability of Zr-rich Zr–Al alloys are also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern electronic structure theory based on density functional
theory (DFT) [1] has become a standard tool in condensed
matter physics, chemistry and materials science for theorists
and experimentalists alike. The ability to make detailed
predictions of the atomic, electronic and magnetic properties of
materials, coupled with experiments, can yield insights that are
difficult, if not impossible, to obtain otherwise, and allow one
to discriminate among different apparently plausible physical
explanations.

The DFT problem is non-trivial. Over the years many
different methods and approaches have been proposed and
used, all with different strengths and weaknesses. It is
somewhat surprising to note that most of the methods and
codes in use today trace their roots back decades, albeit with
significant improvements and additions. This long timescale

reflects the large investment in time (measured in person–
years) required to develop code, the pragmatic view of DFT
codes as simply tools, the relatively few people directly
involved in program development, and the fact that the
underlying physical bases for the approaches have not been
superseded.

With advances in computational power, it is now possible
to tackle problems that were completely out of reach just a
few years ago. The fastest—and yet reliable—approaches are
based on plane wave basis sets (pseudopotential approaches),
where fast Fourier techniques can be heavily exploited such
that the Hamiltonian matrix can be built in a fast and
efficient way, and allows for efficient iterative diagonalization.
Forces and matrix elements are also formally simple and thus
straightforward and fast to calculate.

The all-electron augmented methods [2] represent another
branch of development. Here space is broken up into spheres
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(often called ‘muffin-tin’ spheres) around the atoms and an
interstitial region, and the wavefunctions, density and potential
are defined in a piece-wise manner, consisting of some analytic
form in the interstitial and numerical solutions inside the
spheres. The use of a ‘natural’ (atomic-like) representation
of the wavefunctions around the nuclei allows for an efficient
description of the chemical bonding and facilitates the proper
treatment of localized properties such as core hole excitations.
The augmented plane wave (APW) method [2] uses plane wave
representations in the interstitial, but other choices have been
(and continue to be) used. In the linearized version (LAPW),
two radial functions are used for each angular moment to
match the value and derivative across the sphere boundaries
so that the variational expressions [3] for the eigenstates
do not require surface terms, and since the Hamiltonian
is energy-independent, matrix diagonalization can be used.
Although Marcus [3] was the first to explicitly write down
the LAPW (among other formalisms), Andersen [4] and
Koelling and Arbman [5] independently developed the first
functional LAPW codes. While the utility of the LAPW
method was quickly realized, including for surfaces and film
calculations [6], it was also recognized that treating the
potential (and density) without shape approximations [7, 8]
was essential in order to accurately calculate the properties
of low symmetry or ill-packed systems. The difficulty in
formulating a full-potential method is related to the solution
of Poisson’s equation because of the rapid variations in the
all-electron charge density near the nuclei and the long-range
nature of the Coulomb interaction.

The combination of a general approach to the solution of
Poisson’s equation [7] for all-electron systems and the LAPW
method resulted in the full-potential linearized augmented
plane wave (FLAPW) method [9, 10]. This full-potential
formulation also provided a natural and numerically stable
approach for calculating all-electron total energies [10] that
does not suffer from catastrophic numerical cancellation. With
total energies and forces [11], the FLAPW method became
a method with wide applicability known for its accuracy.
But a price has to be paid for this flexibility in terms of
computing time and complexity: (i) building the Hamiltonian
(and overlap) matrix is costly because of non-spherical matrix
elements; (ii) iterative diagonalization is more difficult to
implement; (iii) the piece-wise representation and the matching
at sphere boundaries introduces a dependence on the chosen
spheres, which can be cumbersome when, during structural
relaxation, atomic spheres intersect and (iv) the formalism
generally is significantly more elaborate and complex to
program.

The FLAPW method is actively being developed by at
least several different groups [12–15]. In this paper we discuss
some technical aspects of our version of FLAPW known
as flair [12] and some physical applications. Although the
original papers provide an overview of the method, many of
the improvements incorporated in flair related to applicability,
user friendliness and extensions have never been published
even though they may have been essential in the calculations
needed to address physical problems. In section 2 we describe
some details and modifications related to the choice of basis

functions that significantly improve the usability of the method
compared to standard/original FLAPW. In section 3, we
discuss the possibility of rewriting the Hamiltonian matrix
elements in a k-independent fashion. Then in section 4 we
discuss the inclusion of external electric fields and results
for image planes of various metal surfaces. Results for the
magnetic coupling of core hole excitation in Fe are given in
section 5. Finally, the application of DFT calculations to
the problem of defects and phase stability in Zr–Al alloys is
discussed in section 6.

2. Basis functions

The form of the basis functions in the augmented methods is at
once both an advantage and a disadvantage. Because the basis
functions inside the atomic spheres are numerical solutions
using the actual potential, they are effectively optimized for
the particular system and by construction fulfill the cusp
condition, thus leading to flexible (and accurate) solutions.
However, because the basis functions change during the
iteration process and have different representations in different
regions of space, they significantly complicate the formalism
(and programming) and introduce a number of additional
parameters such as the sphere radii and energy parameters. In
contrast, in plane wave pseudopotential and PAW approaches,
the basis functions are simple with nice analytic properties,
but the underlying parameters and approximations (such as
core radii or cutoffs) are hidden in the generation of the
pseudopotentials such that even their existence is not obvious.

2.1. Energy parameters

A seemingly trivial issue in the augmented methods is the
choice of energy parameters. A misplaced energy parameter
may cause problems analogous to the ‘ghost’ states seen in
pseudopotential calculations that arise because a radial basis
function (or its energy derivative) is from the wrong branch
of the logarithmic derivative. Two related issues are how to
choose reasonable energy parameters and then how to specify
them. Once choices have been made, it is convenient, as a
practical matter, to have the energy parameters chosen and
updated automatically.

In the linearized methods, the radial wavefunctions inside
the atomic sphere are expressed in terms of numerical
solutions of the Hamiltonian, u�(r; ε�), for angular momenta
� = 0, 1 . . . at an energy ε� and the corresponding energy
derivatives u̇�(r) ≡ du�(r)/dε. By construction, eigenstates
whose energies are close to the energy parameter ε� will be
given most accurately. Since the states that contribute to the
charge density, and hence the total energy, are the occupied
states, we choose the energy parameter for a given � equal to
the center of gravity of the occupied states of that character,
which is equivalent to choosing ε� to minimize the rms
deviation of the occupied band energies; initially, the energy
parameters are set equal to the energies of the corresponding
atomic energies. Since during the self-consistency cycle the
bands change, sometimes significantly, the energy parameters
are updated every iteration. Because the self-consistent density
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depends on the energy parameters through the wavefunctions,
the energy parameters are part of the specification of the self-
consistent density.

This algorithm provides a well-defined and accurate
method for choosing the energy parameters, with the caveat
that the program automatically checks for the correct number
of nodes to ensure that the u�(r; ε�) is from the correct
branch. In a bulk system, however, the zero of the potential
is arbitrary and will depend on the convention chosen. For a
surface calculation, the situation is somewhat better in that the
potential far away from the surface is a natural vacuum zero,
but in a film geometry there are possibly two different vacuum
zeros. Moreover, the relative energy position of different atoms
can change significantly during the self-consistency procedure,
especially for compounds. These practical considerations
make it problematic to specify the energy parameters on an
absolute energy scale.

Our long-time approach for dealing with this issue is
based on the observation that core-level shifts provide a
measure of the chemical and physical environment, but the
(deep) core levels orbitals themselves do not take part in the
bonding or change their shape. (The validity of the frozen
core and pseudopotential approximations are based on this
behavior.) These core states sample the potential near the
nucleus and their energies provide a way to align each atom
to a common zero that consistently includes the shifts in the
potential. Thus, we choose as the reference energy for the
energy parameters the value of the potential at a distance ∼1/4
of the atomic sphere radius out from the nucleus, and let
the energy parameters themselves ‘float’. With this simple
device, choosing energy parameters can be done completely
automatically throughout the self-consistency cycle because
a change in the (local) zero of the potential does not cause
a change in the radial basis functions. This same idea of
‘floating’ energy parameters is also used for the basis functions
in the vacuum regions.

2.2. Explicit core orthogonalization

The use of floating energy parameters greatly simplifies
the practical application of FLAPW (and other augmented
methods). However, a significant problem remains related
to so-called semi-core states, i.e. states that are often 10–
15 eV below the valence bands, but whose radial extent is such
that they have significant weight outside the atomic spheres.
Typical examples are the shallow p core states at the beginning
of the transition-metal rows.

In principle, any calculation of the eigenstates should
include all the (occupied) states, including the core states, as
done in a standard LCAO method. Pseudopotential approaches
define effective Hamiltonians whose spectra no longer include
the core levels and replace the valence wavefunctions by
pseudo-functions. In the augmented methods, the Hamiltonian
is put into core–valence block diagonal form. Assuming
core–valence orthogonality, the core and valence states can be
determined separately. This orthogonality is exact for core
states completely contained inside the atomic sphere. Let
ĥ be the radial �-dependent Hamiltonian and let ui be the

radial solution at εi , ĥui = εi ui , with regular boundary
conditions applied at the origin. (ui is not necessarily an
eigenstate of ĥ since no condition is placed on the solution at
the sphere boundary.) A Wronskian relationship between the
two functions ui evaluated at different energies εi is found by
integrating over a sphere of radius S to give

〈u1|ĥ|u2〉S − 〈u2|ĥ|u1〉S = (ε2 − ε1)〈u2|u1〉S

= S2

2

(
u2u′

1 − u1u′
2

) |r=S (1)

where u′ ≡ du/dr . Equation (1) demonstrates that u1 and
u2 are orthogonal when ε1 �= ε2 and the value and derivative
of one of the two functions, e.g. u2 (corresponding to a
core state), is zero on the sphere boundary. (The second part
of equation (1) holds non-relativistically; the corresponding
relativistic version is written in terms of f and g, the large
and small components, respectively, as

S2 ( f2cg1 − f1cg2) |r=S, (2)

where cg is related to the derivative of f by the radial Dirac
equation cg = { f ′ + (κ + 1) f/r}/2(1 + (ε − V )/2mc2.)
Similarly, by taking the derivative of equation (1) with respect
to ε1:

(ε2 − ε1)〈u2|u̇1〉S − 〈u2|u1〉S = S2

2

(
u2u̇′

1 − u̇1u′
2

) |r=S, (3)

it is easy to see that 〈u̇1|u2〉S = 0 under the same conditions.
Because the decay of the core states is exponential, the

orthogonality between the core levels and the radial basis
functions u�, u̇� over the sphere is only approximate (becoming
exact as s → ∞). Although this approximation is quite
accurate for deep core levels, it becomes problematic as
the core levels become shallower and more extended, or if
the spheres become smaller so that the off-diagonal core–
valence terms become larger. The relative amount of the core
density outside the sphere provides a measure of this non-
orthogonality. Once the semi-core charge outside the atomic
sphere starts to become significant, problems arise with ghost
states and other numerical instabilities; these most often first
show up as increasing contributions of u̇� to the wavefunctions,
resulting from increasing linear dependence (overlap) of u̇� and
the semi-core state.

To deal with these issues a number of different approaches
have been used over the years. The simplest is to raise the
energy parameter, thereby increasing the energy separation,
and decreasing the overlap of the core and valence states.
Unfortunately, this approach seldom works and, when it
appears to, it often requires unreasonable increases in the
energy parameters such that the function actually is from
the next branch corresponding to a higher principal quantum
number. Conversely, the energy parameter can be lowered near
the energy of the semi-core level so that the semi-core states
are treated as valence states. Although this approach solves the
ghost state problem, it also drastically reduces the variational
freedom describing valence states of that � character. Whether
that lost accuracy is important depends on the system.

Another common approach is the use of so-called ‘local
orbitals’ [16]. The semi-core states are included in the valence
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band by introducing another radial function, ulo, with its
energy parameter set to the semi-core energy. The local orbitals
(LO) are defined to have zero value and derivative on the sphere
boundary—which requires that the LO has significant u� and
u̇� contributions—and are then coupled to ‘fictitious’ plane
waves. In this way both the valence and semi-core states are
obtained in a single diagonalization, ensuring orthogonality.
Compared to the approach of simply moving the energy
parameter down to the semi-core state, the valence states are
described by u� and u̇� in the valence region. However,
since the extra LO basis functions and their derivatives are
required to vanish at the sphere boundary, they do a poor job
by themselves of describing the semi-core states: if they did
describe the semi-cores well, the LOs would not be needed
since, by equation (1), the semi-core and valence states would
already be orthogonal. As obtained from the diagonalization,
the semi-core eigenstates must be a mixture of the LOs
plus a large number of ‘normal’ LAPWs in order to recover
the correct ulo radial behavior and to describe the decaying
tails in the interstitial. Moreover, variational calculations by
their nature describe the lowest (i.e. semi-core states) most
accurately so errors in those states will affect the accuracy
of the valence states through the orthogonalization. Thus, to
describe both the semi-core and valence states accurately, this
approach requires larger basis sets than the standard LAPW
method. Even with these complications, the use of the LO in
this manner provides one reasonably straightforward way to
deal with the semi-core issues.

When the semi-core states do not have significant overlap
and bonding with atoms on other sites, a separation between
valence and (semi-)core states is physically reasonable. Here,
we present a modification of the (F)LAPW method that, in this
case, (i) deals with the valence–semi-core orthogonalization
explicitly, (ii) is easy to implement and (iii) maintains
variational freedom in the valence regime. For situations where
the semi-core states have significant overlap with other sites,
their spatial extent (and tails) and energy dependence should
be treated explicitly (cf. section 2.3).

To remove the core state(s) |c〉 from the spectrum of
a Hamiltonian Ĥ , we can define a modified Hermitian
Hamiltonian

H̃ = {1 − |c〉〈c|} Ĥ {1 − |c〉〈c|} (4)

such that H̃ |c〉 = 0 and H̃ |v〉 = Ĥ |v〉 (|v〉 corresponds to a
valence eigenstate), i.e. H̃ has the same valence eigenstates as
Ĥ , but does not include the core states. Rather than change
the Hamiltonian (as done in pseudopotential approaches), one
can apply the projection operator {1 − |c〉〈c|} to the basis
functions. (|c〉 is, in the case of semi-cores, non-zero outside
the sphere and thus 〈c|u�〉S �= 0 over the sphere.) Applying
this operator to the FLAPW radial basis function u� directly is
not appropriate since, for eigenstates with energy equal to ε�,
this function has the correct radial behavior and nothing in the
(projected) basis would be able to recover the missing part.

Since u� is needed in the basis and problems often
manifest themselves in the energy derivative contributions, we
replace the energy derivative by a modified function:

|ẇ�〉 = |u̇�〉 + α|c〉 + β|u�〉. (5)

Requiring this function to be orthogonal over the sphere to both
u� and the uppermost core state c of this �:

〈ẇ�|u�〉S = 0 (6)

〈ẇ�|c〉S = 0, (7)

and using 〈u̇�|u�〉S = 0, 〈u�|u�〉S = 1, yields (dropping the S
subscript on the inner products)

|ẇ�〉 = |u̇�〉 − 〈c|u̇�〉
〈c|c〉 − 〈u�|c〉〈c|u�〉

[
|c〉 − |u�〉〈u�|c〉

]
. (8)

For core states completely contained in the spheres, ẇ� is
identical to the normal energy derivative u̇�. Since u� and
ẇ� are independent functions, the continuity of the LAPW
basis functions is maintained (provided the Wronskian does not
vanish), so no additional surface terms are needed.

The use of ẇ� instead of u̇� requires relatively few changes
since it is simply a different radial function. The Wronskian
between ẇ� and u�, which comes into the matching conditions
at the sphere boundary:

u�ẇ
′
� − u′

�ẇ� = (
u�u̇′

� − u′
�u̇�

) − 〈c|u̇�〉
〈c|c〉 − 〈u�|c〉〈c|u�〉

×
[
u�c′ − u′

�c
]

(9)

is no longer a constant as for u� and u̇� (cf. equation (3)).
However, as a practical matter for reasonably sized spheres
(where less than about 30% of the semi-core density is outside
the sphere) the correction to the Wronskian between u� and u̇�

is small and the Wronskian remains non-zero.
To obtain the modified contributions to the Hamiltonian,

note that ẇ� satisfies

ĥ|ẇ�〉 = ε�|ẇ�〉 + |u�〉 + (ε� − εc)
〈c|u̇�〉

〈c|c〉 − 〈u�|c〉〈c|u�〉 |c〉,
(10)

which, except for the last term involving |c〉, is the same as the
equation for u̇�. The contributions to the Hamiltonian in the
spheres are

〈u�|ĥ|u�〉 = ε� (11a)

〈ẇ�|ĥ|u�〉 = 0 (11b)

〈u�|ĥ|ẇ�〉 = 1 + (ε� − εc)
〈c|u̇�〉〈u�|c〉

〈c|c〉 − 〈u�|c〉〈c|u�〉 (11c)

〈ẇ�|ĥ|ẇ�〉 = ε�〈ẇ�|ẇ�〉. (11d)

Compared to the standard LAPW Hamiltonian contributions,
the only change (other than the replacement of u̇� by ẇ�)
is the inclusion of the last term in equation (11c). Non-
spherical contributions to the Hamiltonian, forces, potentials,
total energies, etc, are all calculated in the standard ways.

This modified form of the energy derivative, nicknamed
‘explicit orthogonalization’ (XO), has been used routinely over
the last few years. Whereas previously even simple systems
(e.g. Ge, KCl) could present problems, this approach is
quite robust. From a variational point of view for functions
inside the sphere, explicitly projecting out the semi-core states
from the valence basis (the energy derivative) provides the
same variational freedom as including another radial function

4



J. Phys.: Condens. Matter 21 (2009) 084201 M Weinert et al

with energy parameter εc since both approaches span the
same space, u�, u̇�, and c�. By explicitly orthogonalizing
to the core state, the Hamiltonian is effectively block (core
+valence) diagonalized. On the other hand, u�, u̇�, and
ulo form a set of non-orthogonal axes in function space,
requiring a diagonalization of the full space. As a practical
matter, the various functions are not free to vary completely
independently because of the continuity conditions across the
sphere boundary imposed and the limited basis size. In such
cases, it is generally preferable to start with basis functions
that are as close to being diagonal as possible; that these types
of continuity conditions play a role in convergence is known
both from comparison to the APW method and to linearized
methods such as LASTO [17] that have smaller basis sets and
hence are more limited in the combinations of u and u̇ that
can be constructed. Based on experience, the XO approach
provides good variational freedom and has the advantage of
smoothly going over to the standard FLAPW.

2.3. Extended local orbitals

The explicit orthogonalization described above is appropriate
when the semi-core states do not have significant overlap with
other atoms. If there is significant overlap, the description of
the tails of functions centered on one site at another site is
difficult. Use of the XO approach discussed above neglects
the interactions of this state on different sites, and thus ignores,
for example, core–core repulsion effects. Including the semi-
core using the ‘local-orbital’ [16] approach by including the
LO explicitly in the valence would seem to improve upon this
situation. Unfortunately, the situation is more complicated.
Consider a semi-core state with energy εc. If at a neighboring
site there are no semi-core states, then the tails inside that
sphere must be described by the valence u�, u̇�, whose ε�

is off by 10–20 eV, and hence will often be in the wrong
branch. This could be remedied by including LOs on the
neighboring site with the corresponding εc. However, these
(secondary) LOs would not correspond to a single �, since
the expansion about another site involves higher angular
momenta [18]. Thus, for consistency, every (primary) LO
should have a corresponding set of LOs on every other site.
The standard approximation of ignoring these issues generally
leads to reasonable physical results, but it is difficult a priori
to determine the magnitude of the resulting error. This
problem is not unique to the augmented methods; approaches
based on, for example, norm-conserving pseudopotentials or
finite number of projectors inherently have similar issues
although these complications are conveniently ignored in the
construction of the pseudopotentials.

To deal with situations where the spatial extent of the
semi-core or localized valence states (e.g. 4f states) is
important, we propose supplementing the basis with Bloch
sums χα

k (r) of atomic-like functions φα:

χα
k (r) = 1√

N

∑

t

eik·tφα(r − t − rα) (12)

where t is a lattice translation vector, α denotes both an atom
and atomic state, rα is the position of the atom in the unit cell
and N is the number of unit cells with the crystal.

The criteria for the atomic-like—‘extended local orbitals’
(elo)—functions φα(r) = φα(r)Y�m(r̂) are that the radial
function φα(r) for r > S should closely resemble the tails of
the semi-core states and, secondarily, have analytic properties
that simplify expansions about other sites. Possible choices
include Slater-type orbits and, our current favorite, modified
spherical Bessel functions of the third kind, k�(κr) [19], where
k0(z) = ( 1

2π/z)e−z , k1(z) = ( 1
2π/z)e−z(1 + z−1), etc.

These functions are solutions for negative energies relative to
a muffin-tin potential and can be expanded about another site
using the Gegenbauer addition theorem [19, 20] to obtain

k�(κ |r + R|)Y�m =
∑

L ′ L ′′
4π(L|L ′L ′′)(−1)�

′′
k�′(κ R)i�′′(κr)

× YL ′(R)YL ′′(r) (13)

where (L|L ′ L ′′) is a Gaunt coefficient, i�(z) is a modified
spherical Bessel function of the second kind and R > r . At
the sphere boundary, the requirement that this function matches
the numerical (semi-core) radial function cl(r), evaluated at εc

determines κ . Note that the analytic form of φα is only needed
outside the sphere. The matching of the standard LAPWs in
the basis set are done using the u� and ẇ� functions discussed
above. If one wanted to include an additional radial function
in the spheres, for example the energy derivative of c� to
better describe the energy variation of the semi-core band, an
additional set of φs such as the energy derivatives of the k�

should be included.
In order to avoid the problems of requiring additional

radial functions in each secondary sphere, the tails of φ are
used explicitly, i.e. they are not expanded in terms of the
u�, etc, in those spheres. This treatment of the tails is
effectively an LCAO-type approximation. The extended local
orbit contributions to the Hamiltonian and overlap matrices are
broken up into interstitial and sphere terms.

The tails are treated in two related ways. In the first, the
atomic-like functions φ(r) are Fourier-transformed, using a
much larger G cutoff than is used to define the basis set, and
then combined to build up the Bloch functions. (To improve
the convergence of the Fourier transform of φ, φ(r) is replaced
by a polynomial inside the sphere.) In this case, the Fourier
expansion, rather than the Bloch expansion equation (12),
defines the additional functions everywhere except in the
sphere α, where the function is defined by the numerical
solution. This approach is similar to how the linearized
augmented Slater-type orbital (LASTO) method [17] was
implemented and is reasonably straightforward to implement.
The most difficult terms are the tail-u� terms since the Fourier
representation of the tails must be expanded on the radial mesh
in order to do the necessary integrals.

The second approach is to make a tight-binding
approximation so that for any sphere only the tails from a
few neighboring sites are included. To calculate the interstitial
terms, the potential and/or APWs are expanded in a spherical
harmonic representation. In the spheres, the tails are re-
expanded using standard expansion theorems [19] such as
equation (13). The type of operations needed are similar to
the LCAO methods.

In both approaches, the sphere terms are straightforward
once a numerical expansion of the tail terms is made in the
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spheres,
∑

λμ φ
αβ

λμ(r ′)Yλμ(r′), where r′ = r − rβ . For the

LAPW-elo off-diagonal terms in the sphere α, 〈χα|Ĥ |G〉α will
consist of terms as discussed in section 2.2, e.g. 〈u�|ĥ|c�〉. For
spheres centered on a different site β , 〈χα |Ĥ |G〉β will have
terms such as 〈φαβ

λμ|ĥ|ẇ�〉. For contributions that consist of
tails from two sites (or different orbitals), these can be done
either numerically or analytically, depending on the choice of
tail. The interstitial contributions require a Fourier transform
of the tails. The calculation of densities follows directly from
the representation of the extended local orbitals.

The use of the extended orbitals should improve the
convergence with respect to basis size for cases when semi-
cores, or low-lying/compact valence states such as the oxygen
2s or 4f states, are important. Including the extended
local orbitals is not free, but by using the tight-binding-like
representation the scaling is linear, albeit with a reasonably
large prefactor. Modifications are required for the force
calculations because of the atom-centered and extended nature
of the additional basis functions.

3. k separation of the Hamiltonian matrix

As discussed above, augmenting the plane wave basis of the
(L)APW with atomic-like functions inside an atomic sphere
of radius Rα centered at rα requires matching conditions on
the sphere boundary after the plane wave exp(i(k + G) · r) (k
in the first Brillouin zone and G a reciprocal lattice vector)
is expanded into spherical harmonics and spherical Bessel
functions around the atomic position rα . These augmented
basis functions naturally depend also on k. In the LAPW
[4, 5], where the values and first derivatives are matched, the
basis functions inside the spheres are written as

�α
L(k + G, r) = {aL(k − G)u�(|r − rα|)

+ bL(k − G)u̇�(|r − rα|)}YL(r − rα) (14)

for a given set L = (�, m) of angular momentum quantum
numbers. The matching coefficients aL , bL contain the k-
dependent spherical harmonics and Bessel functions. In the
original APW ansatz the explicit k dependence consists of
terms diagonal in L because of the restriction to spherically
symmetric (‘muffin-tin’) potentials inside the spheres, and
therefore this dependence was not a major concern. However,
in FLAPW calculations a substantial price has to be paid
because three L summations are required in the Hamiltonian
(potential) matrix elements inside sphere α:

〈k + G1|V α|k + G2〉
=

∑

L ′

∑

L

∑

L ′′
〈�α

L ′(k + G1)|VLYL |�α
L ′′(k + G2)〉. (15)

The expansion of the potential V = ∑
L VLYL should be made

to at least twice the �max for the wavefunction. This costly
evaluation has to be done for each k point separately due to the
k dependence of the matching coefficients.

Switching to simple plane waves, exp(i(k+G)·r), as basis
functions for the whole of space, the potential matrix element
is independent of k simply because the Bloch factor exp(ik ·r)
cancels out: only the kinetic energy terms are k-dependent and
the Hamiltonian matrix elements are

〈k + G1|Ĥ |k + G2〉 = (k + G2)
2δG1,G2 + 〈G1|V |G2〉. (16)

The potential V has the full symmetry of the lattice,
and therefore may be Fourier-expanded as V (r) =∑

G VG exp(iG · r) by summing over the reciprocal lattice
vectors. This convenient representation makes plane-wave-
based approaches very attractive for fast and efficient
calculations. Of course, the price to pay here is that a
full potential cannot be realistically described, and therefore
suitable pseudopotentials have to be constructed, a task that
is not straightforward. However, schemes like the projector
augmented wave (PAW) concept [21, 22] seem to be reliable in
modeling the valence electronic structure of systems even with
very localized states.

The aim of the present discussion is to pursue the idea
of k-independent potential matrix elements for the FLAPW
method. We reformulate the ansatz for the basis functions
inside the spheres by explicitly pulling out the Bloch factor
and considering

�α
L(k + G, r) = eik·r�α

L (G, r). (17)

Now only the k-independent part of the basis function
�α

L(G1, r) is matched to the k-independent part of the plane
wave, exp(iG · r). It is then obvious that one gets an
expansion similar to equation (14) for �α

L(G, r), but the
matching coefficients aL , bL are now independent of k
and, consequently, the potential matrix elements are also k-
dependent, as in equation (16) for simple plane wave basis sets.
Making use of the basis function of equation (17) leads to a
Hamiltonian matrix element inside sphere α (in atomic units):

〈�α(k + G1)|Ĥ |�α(k + G2)〉
= k2

2
〈�α(G1)|�α(G2)〉 (18a)

− ik · 〈�α(G1)|∇�α(G2)〉 (18b)

+ 〈�α(G1)|Ĥ FLAPW|�α(G2)〉. (18c)

(For simplicity, the summations over all the different L’s are
not written explicitly.) The last term, equation (18c), is just
the matrix element within the standard FLAPW formulation,
including the non-spherical potential matrix elements. The k
dependence of 〈Ĥ FLAPW〉 has disappeared, as desired, but at a
price: two additional terms appear, because one has to perform
derivatives of the product � times the Bloch factor exp(ik · r).
The first kinetic energy term, equation (18a), is just the overlap
S matrix element inside the spheres:

Sα(k + G1, k + G2) = Sα(G1, G2)

= 〈�α(G1)|�α(G2)〉 (19)

multiplied by the constant factor k2/2. Note that S is now also
independent of k, which is not the case in the original FLAPW
ansatz. The final remaining term, equation (18b), contains
the matrix element of the gradient ∇�, for which the scalar
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product with the constant vector k needs to be done. The key
question is how costly the evaluation of this second kinetic
energy contribution might be. Transforming ∇ into polar
coordinates results in two differential operators. The operator
∇r acts on the radial wavefunctions, and its components
are multiplied by some linear combination of the spherical
harmonics Y11, Y10, Y1−1. Calculating the matrix elements for
∇r involves an integral over three spherical harmonics, such as∫

Y ∗
L ′ Y1mYL ′′ d
, resulting in ∼l2

max evaluations of the matrix
element. The second operator ∇
 acts on angular coordinates,
i.e. on the spherical harmonics Y�m , and produces another
set of harmonics Y�±1,m±1. The number of evaluations of the
matrix element is therefore only of order ∼�max, because of the
orthonormal properties of the spherical harmonics. Finally, one
notices that—again—the matrix element itself is independent
of k.

Summarizing, separating out the vector k from the
FLAPW basis functions in the spheres results in the major
advantage that all costly matrix elements now become
independent of k. They need to be calculated only once,
for example for the first k point, and then used for building
the Hamiltonian for the other remaining k vectors. Certainly,
for medium to larger basis sizes, even writing to and reading
from disk is much faster than calculating the cumbersome non-
spherical potential matrix elements. Achieving a significant
speed-up of matrix building might aid in applying the very
efficient iterative diagonalization techniques of plane wave
codes to the FLAPW method. Using the separation ansatz
of (17) has further consequences, e.g. for calculating the
charge density for which one might apply the same storage
technique as described above. Of course, forces and related
concept results that depend on the explicit form of the
wavefunctions have to be re-derived. The price to be paid
seems to be rather moderate, but so far no real tests have been
performed; actual tests will be done in the near future.

Finally, we note that the presented mathematical concept
is not new, and was suggested for the so-called k · p method
(see, e.g., [23]) that was originally designed as an interpolation
scheme for deriving eigenvalues on a finer grid of k vectors
than originally used for the actual full solution of Schrödinger’s
equation. However, we emphasize that, although formally
similar to the k · p method, the k separation reformulates the
Hamiltonian, for which the eigenvalue problem is solved in its
full glory.

4. External electric fields

External electric fields are integral to a number of experimental
techniques, including scanning tunneling microscopy and field
desorption microscopy, and are used to alter the electronic
properties of (nano)structures. Classical electrostatics describe
the effect of electric fields and introduces concepts such as
image charges. Calculations allow us to make the connections
between these classical concepts and their underlying quantum
mechanical basis. For example, the static image plane can be
obtained from the center of gravity of the screening charge
induced by a weak applied field [24–27], and second harmonic

generation is related to the nonlinear response of the electron
gas to stronger applied electric fields [28, 29].

Including external electric fields in a standard electronic
structure calculation is problematic since the resulting potential
is not periodic. Within the film geometry of the FLAPW
method, however, the external electric fields can be included
straightforwardly. Although this approach as been used for a
long time [30–33], the implementation has not been described
previously [30, 34].

4.1. Inclusion of a static external field

Including external fields within density functional theory is in
principle straightforward: an additional term of the form

∫
drVext(r)n(r) (20)

is added to the energy functional, where Vext is the potential
associated with the field and n(r) is the electron (number)
density. For the usual case of the external field due to the
atomic nuclei, Vext = −Z/r .

An external field, and its corresponding potential, can be
related to a charge distribution ρext(r) via Poisson’s equation

∇2Vext(r) = −4πρext(r). (21)

For a system with two-dimensional periodicity, we can
write the density and potential in a two-dimensional Fourier
expansion, e.g.

V (r) =
∑

G‖

V (G‖, z)eiG‖·r‖ . (22)

In this representation, the Poisson equation separates into

[
∂2

∂z2
− G2

‖

]
V (G‖, z) = −4πρ(G‖, z). (23)

For the uniform field, we need to consider the G‖ = 0 term
only. To specify the solution of this second-order equation
requires two boundary conditions. Integrating this equation,
using mixed boundary conditions at z = z0 (z < z0), gives the
potential in terms of the density as (we drop the G‖ = 0 label
for simplicity)

V (z) = V (z0) − (z0 − z)

(
∂

∂z
V (z)

∣
∣
∣
∣
z=z0

)

− 4π

∫ z0

z
dz′ρ(z′)(z ′ − z). (24)

In the normal zero-field case, z0 → ∞. For the G‖ �=
0 terms, equation (23) is solved using the Green’s function
G(z, z′) = 2π exp(−G‖|z−z′|)/G‖, resulting in contributions
to the potential of the form exp(iG‖ · r‖ ± G‖z).

Because of the linearity of Poisson’s equation, we are free
to pick these boundary conditions in any convenient manner.
One choice to include the electric field sets (∂/∂z)V (z)|z0 =
−E ; in this case, no ρext is required to describe the field.
Likewise, one can apply two-point boundary conditions, giving
the potential at opposite sides of a film. These choices are
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useful when, for instance, specifying the potential drop across
a film.

Another choice, with a different physical interpretation, is
to require

V (∞) = 0, (25)

∂

∂z
V (∞) = 0, (26)

consistent with the boundary conditions for the zero-field case,
and requires an external charge distribution ρext to describe
the field. To represent the uniform electric field, elementary
electrostatics gives that a planar sheet of charge with surface
density σ = q/A (q is the total charge and A is the area)
will generate a normal field E = 4πσ n̂. To determine the
magnitude of this surface charge, first note that because of the
long-range nature of the Coulomb interaction, the electrostatic
energy is well-defined only for systems with total—electrons,
nuclei, plus charge sheet—charge neutrality; this requirement
is also imposed in the standard zero-field case. With this
charge neutrality condition, the potential at z = −∞ is, from
equation (24),

V (−∞) = −4π

∫ +∞

−∞
dzzρ(z)

= −4π

∫ +∞

−∞
dzz(ρext + ρi ),

and dV (−∞)/dz = 0, where ρi is the induced density. Thus,
we have the physically reasonable result that the change in
potential across the film is related to the dipole moment of the
external and induced densities.

Thus, to include the external field, we can place a sheet
of charge ‘far enough’ outside the surface so that the electrons
have negligible overlap with the sheet; this distance is typically
6–10 Å from the last row of atoms. These sheets have charges
of the order of ±0.005–0.05e per unit cell, corresponding to
fields ∼0.1–1 V Å

−1
, and then the total number of electrons in

the film is adjusted accordingly to satisfy the charge neutrality
condition. The sign of the electric field is chosen such that,
for a positive (negative) electric field, there are fewer (more)
total electrons in the system. Because the sheet of charge can
be considered as another set of charges completely analogous
to the atomic nuclei, albeit in the vacuum region, the same
procedures for solving Poisson’s equation [7, 9] as used for
the zero-field case can be used. In particular, the explicit
contribution from the sheet of charge need only be calculated in
the vacuum region; the contributions of the electric field in the
interstitial and sphere regions are included correctly through
the modified boundary conditions at the vacuum–interstitial
interface.

Although the external field is uniform, the resulting
induced changes in the density and total potential have G‖ �=
0 contributions. Our implementation of the electric field
correctly determines these contributions, as well as properly
including the boundary conditions. Since an external field
necessarily destroys the translational symmetry of the problem
perpendicular to the surface, film and/or semi-infinite [26]
treatments provide a natural (and rigorous) treatment of electric
field effects. For completeness, we point out that electric fields

can also be included in periodic bulk supercell models [36–38]
by placing an external electric dipole layer in the vacuum
region of the supercell, with the dipole potential updated each
iteration to ensure the proper boundary conditions.

An important implementation issue to consider in any
film geometry is the representation of the Coulomb potential
to use. In particular, to get the spherical (lattice) harmonic
representation on the atomic spheres, one should directly
expand the exponential terms ∼ exp(iG‖ · r‖ ± G‖z) resulting
from (23) using the analytic expansion of the ‘complex’ plane
waves [7], rather than first converting them into the normal 3D
Fourier representation used in the interstitial region.

4.2. Induced densities and image planes

To illustrate the application of external fields, we consider
how external fields are screened at the surface of metals. The
electron density n in a static external field E can be expanded
as

n(z, E) = n0(z) + En1(z) + E2n2(z) + · · · . (27)

As shown by Lang and Kohn [25], the image plane is related to
the centroid of the induced density, δn(z) ≡ (n(z, E)−n0)/E :

z0
image =

∫
dzzn1(z)∫
dzn1(z)

(28a)

zimage(E) = z0
image + E

∫
dzzn2(z) + · · · . (28b)

For time-dependent fields, E(t) = E0 sin ωt , where the
frequency is much less than the plasmon frequency so that
one is in the adiabatic response regime, the time- and field-
dependent density can be written [28] in terms of the static
response:

n(z, t) = n0(z) + E(t)n1(z) + E2(t)n2(z) + · · · (29a)

= [n0(z) + 1
2 E2

0n2(z) + · · ·] + [E0n1(z) + · · ·] sin ωt

+ [− 1
2 E2

0n2(z) + · · ·] cos 2ωt + · · · (29b)

≡ ndc(z) + nω(z) sin ωt + n2ω(z) cos 2ωt + · · · . (29c)

In particular, the second harmonic density n2ω is related [28]
to the second-order n2 static-induced density, and then the
longitudinal second harmonic current is proportional to the
second-order polarization:

P2(z) =
∫ ∞

z
dz′n2(z

′). (30)

The overall strength of second harmonic generation (SHG)
is proportional to the integral of P2(z) or, equivalently, the
centroid of the static second-order contribution n2(z). To
extract n1(z), n2(z), etc, we first calculate the induced density
for a series of positive and negative static external fields.

As an illustration, the calculated induced densities for the
(001) and (110) faces of bcc Na, and for jellium at rs = 4
appropriate to Na, are given in figure 1(a). The induced density
is strongly peaked in the surface region, and then oscillates
and decays with a characteristic period into the bulk that is
not tied to the atomic positions. The calculated positions of
the image plane to the jellium edge (atomic plane) are 1.82
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Figure 1. Induced densities for (a) the (001) and (110) surfaces of
Na and for the corresponding jellium of rs = 4, and (b) Ag(001).
The jellium edge, defined as half the interlayer separation from the
surface atomic positions, is at z = 0. Positions of the atoms are
denoted by the filled circles. The densities are normalized to unity.

(3.96), 1.38 (3.80) and 1.25 aB for the (001), (110), and jellium
systems, respectively. The jellium and (close-packed) (110)
results are quite similar, and the differences compared to the
(001) surface are localized in the surface region. The difference
in the position of the image plane between the two surfaces is
a result of the atomic nature (size) of the actual system, and
consistent with the trends obtained from a simple model related
to the image states [35]. All three systems are calculated to
have very similar SHG strengths.

In figure 1(b) the induced density for Ag(001) is shown.
Compared to Na, the width of δn is smaller, the image
plane is in closer, the SHG strength is lower than for Na,
and the oscillations into the bulk are associated with the
atomic positions. In contrast, jellium calculations for rs =
3 (corresponding to Ag) predict an image plane further out
(∼0.1 au) compared to rs = 4, as well as stronger SHG for Ag
than for Na. These results point to the Ag surface being‘stiffer’
than jellium and are a consequence of the d-electron screening
of Ag that is not found in Na or jellium.

Electric fields can couple differently to different spin
channels in magnetic systems, resulting in electric-field-
induced magnetic effects [32]. In figure 2(a) the induced
charge and spin densities are shown for Fe(001). The first-
order-induced charge n1 is strongly localized to the surface

region, with its centroid (the image plane) outside the surface
atomic layer, again demonstrating the importance of both sp
and d electrons to the screening. The corresponding induced
spin density, on the other hand, is shifted inward and centered
on the Fe atom, as expected since the magnetism is mainly
carried by the d electrons.

Nonlinear effects, i.e. n2(z), P2(z), etc, can be
significant. In figure 2(b), the image plane position is seen
to change significantly with field and clearly has nonlinear
contributions. In the lower part of figure 2(a), the nonlinear
charge contribution of P2(z), which determines the total SHG
intensity, is seen to be almost completely outside the surface
atomic layer; the fact that the spin contribution to P2 does not
vanish far into the bulk is indicative of the different response
of the majority and minority spin channels to external electric
fields.

Using the formulation of the external field in terms of
external charges leads to a relationship between changes in
work function with electric field and changes in the total
energy. The change in total energy between the zero field and
for a finite field corresponds to a change in electrons of �N .
The energy can be obtained by slowly building up the field:

�Etot =
∫ �N

0
dn

∂ Etot

∂n
. (31)

But the derivative is simply the definition of the chemical
potential μ, so we have

�Etot =
∫ �N

0
dn μ(�N). (32)

Because there is still a well-defined vacuum zero in this
construction, the standard relationship between the chemical
potential and work function, μ = −φ, holds.

Figure 3 demonstrates this analysis for Fe(001), where
the total energy differences calculated directly and using
equation (32) are compared; the agreement is excellent. This
relationship between work function changes and total energy
can be used, for example, to compare the difference in

-0.2

0.0

0.2

0.4

n 1(z
) 

(a
.u

.)

Fe(001):
Induced Densities

-15 -10 -5 0 5
z-zjellium (a.u.)

-2.0

-1.0

0.0

1.0

P
2(z

) 
(a

.u
.)

Spin
Charge

-1.0 0.0 1.0

External Electric Field (V/Å)

 1.0

 1.5

 2.0

 2.5

 3.0

z im
ag

e-z
je

lli
um

Fe(001)

(b)
(a)

Figure 2. (a) Induced first-order charge and spin densities n1 and second-order polarization P2 for Fe(001). (b) Field dependence of the image
plane position (in a.u.).
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Figure 3. Total energy differences as a function of the external field
expressed in terms of �N (E = 4πσ = 4π�N/A) determined
explicitly and as an integral of the work function/chemical potential.
The calculated work function is shown in the inset.

anisotropy energies of magnetic systems in electric fields
since—as a consequence of equation (32)—the work functions
for different orientations of the spin magnetic moments in an
electric field will differ.

5. Core holes

Treating core and valence states on an equal footing makes
the FLAPW method particularly well suited to study core-
level excitations from first principles. Particularly interesting
are excitations where the influence of the generated core hole
is immediately mirrored in the corresponding DOS, such as,
for example, in the case of x-ray absorption or energy-loss
near-edge spectra (ELNES). Usually the local excitation is
modeled by the so-called Z + 1 approximation, where the
higher nuclear charge of the excited atom is simulated by
substituting it by the element to its right, i.e. with the Z + 1
atom. FLAPW, on the other hand, offers a direct route to the
excitation if one includes a suitable constraint to deal with the
excited core electron. Here we present a short study of the
core hole effects in bulk bcc Fe when a 2p3/2 core electron
is excited just above EF. We model this event by using
a 3 × 3 cubic supercell that guarantees that the core holes
do not interact with each other and place the excited core
electron of the central atom in the unoccupied valence states
just above EF. The total spin of the remaining core electrons
may be coupled ferro- (F) or anti-ferromagnetically (AF) to the
valence electrons which describes the excitation of a minority
or majority spin core electron, respectively. In figure 4 the
effect of the core hole on the d-like valence states is clearly
visible. The largest effect is on the majority d-states if the
remaining core electron spin is in the same direction, i.e. a
minority core electron has been pushed above EF. Obviously
the majority valence states see a much less screened minority
hole and are thus lowered in energy by the larger attraction of
the nucleus. This reasoning is justified considering the small
effect on the majority d-states when a majority core electron is
excited, leaving behind a net core spin which is AF coupled

Figure 4. Local d-like density of states of the central atom of a bulk
Fe 3 × 3 supercell for the ground state (black solid line) and for a
2p3/2 electron excited just above EF (= 0 eV) with the remaining
moment of the core electrons coupled either ferromagnetically (F;
red solid line) or anti-ferromagnetically (AF; blue dotted line) to the
valence electron moments.

to the valence states. Here the screening is very efficient,
producing a DOS almost indistinguishable from the case where
no excitation is present. Turning now to the effect on the
minority d-states we immediately see a similar large effect for
the two possible core–valence spin couplings. The minority
states are pulled down in energy and thus reduce the local
moment on the excited Fe atom from a bulk value of 2.22 μB
to 1.91 for F coupling and further to 1.41 for AF coupling.
Clearly, in the latter case, the majority core electron pushed
above EF has only a limited number of unoccupied majority
d-states available, which leads to an enhanced occupation of
the minority d-states in the screening process, reducing the
spin moment even more. The effect of the different couplings
on the spin–orbit splitting of the 2p states is negligible and
the value calculated from total energy differences is 12.96 eV,
which agrees very well with a measured value of 12.9 (13.2)
eV [39]. The spin splitting due to the different couplings is
much smaller than the spin–orbit splitting, namely 0.85 eV and
from the total energies one learns, not quite unexpectedly, that
the ferromagnetic coupling—the excitation of a minority core
electron—is energetically favorable.

In figure 5 the effect of the core hole on the charge density
is shown by taking the difference between the density before
and after excitation with ferromagnetic coupling between core
and valence electrons in a (110) plane through the excited
atom. The difference density is a large black hole in the middle
with a bright rim showing the screening charge. Due to the d-
like nature of the screening electrons the screening charge is
rather localized around the excited atom, and the contributions
from the neighboring atoms are very small. A similar result is
found for AF coupling and also for excitations from the 2p1/2

core level.

6. Defects and phase stability in Zr–Al alloys

The Zr–Al binary phase diagram [40, 41] is one of the
most complicated, with 10 reported ordered phases ranging
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Figure 5. Difference density (excited–ground state) for the central
region of a bulk bcc Fe 3 × 3 supercell. A 2p3/2 electron was excited
just above EF with a ferromagnetic core moment coupling to the
valence electrons. Black denotes regions of negative density and
white of positive density. Zero is shown as gray.

from ZrAl3 to Zr3Al, all occurring in narrow composition
ranges of the order of 1%. Of these phases, two are high-
temperature phases and a number of the others decompose
into other phases at high temperatures. The phase diagram
is also complicated from a structural sense in that the
various compounds are found [42] in hexagonal, orthorhombic,
tetragonal and cubic structures. Because of the diversity of
structures and competing phases, the Zr–Al system is a severe
test of electronic structure theory. As shown previously [43],
the overall properties of the low-temperature phase diagram
are correctly reproduced and the existence of a large number
of observed phases is attributed to the fact that the heats of
formation for Zrx Al1−x for x = 0.25–0.75 fall on a nearly
straight line, suggesting that these phases should have narrow
composition ranges.

Although the existence of the different phases can be
understood from calculations of the ideal systems, to describe
the concentration ranges and the temperature dependence
of phases requires that one looks at the intrinsic defects
(vacancies, antisites). In particular, the Zr3Al phase is stable
only to ∼1260 K. In this section, we will concentrate on the
Zr-rich phases: Zr2Al (hP6), Zr3Al (fcc/Cu3Au) and Zr (bcc,
hcp), and determine the energetics of defect formation and
phase stability. The approach we follow is to calculate the
total energies of supercells of between 32 and 128 atoms to
model isolated defects, and then use statistical mechanics to
model the temperature dependence and off-stoichiometry. The
calculations described here make use of flair and are consistent
with the previous results [43] that used pseudopotentials that
were ‘tuned’ to reproduce a number of all-electron results [44];
finding ‘good’ transferable pseudopotentials is non-trivial and
involves a significant amount of art.

6.1. Statistical mechanics of independent defects

The general approach follows [45–47] for determining the
statistical mechanics of an homogeneous binary A1−x Bx alloy

assuming non-interacting defects. We start from the grand
potential 
 to allow for varying numbers (NA, NB) of A and B
atoms:


 = U − T S − μA NA − μB NB, (33)

where μi , i = A, B are the chemical potentials. If the ideal
concentration of the compound is x0, then for a system with N
sites, the total number of each type of atom will be

NA = (1 − x0)N − Nα
v − Nα

B + Nβ

A (34a)

NB = x0 N − Nβ
v − Nβ

A + Nα
B , (34b)

where α (β) denotes the ‘A’ (‘B’) nominal sublattice, Nα
v

corresponds to the number of A vacancies and Nα
B to a B

(antisite) atom on the α sublattice. The internal energy U ,

U = Nε0 + Nα
v εα

v + Nβ
v εβ

v + Nα
B εα

B + Nβ

Aε
β

A, (35)

is given in terms of the bulk energy ε0 and the defect
energies εi obtained from the differences in total energies
between the (fully relaxed) supercell with the defect and the
ideal systems (plus, possibly the pure A and B reference
energies). To complete the specification of the grand potential,
we need the chemical potentials and the entropy. The
entropy has several contributions: vibrational, electronic and
configurational. All of these (as we will see later) are
important, but in the independent defect model, we limit
ourselves to configurational entropy:

S

kB
=

∑

α

ln
(xα N)!

Nα
v !Nα

B !(xα N − Nα
v − Nα

B )! . (36)

(Electronic entropy contributions can be calculated directly in
the electronic structure calculations.)

Minimizing 
 with respect to Nα
i yields expressions for

the concentration of defects:

cα
v = (1 − x0)

e(εα
v +μA)/kBT

1 + e(εα
v +μA)/kBT + e(εα

B+μA−μB)/kB T
(37)

cα
B = (1 − x0)

e(εα
B+μA−μB)/kB T

1 + e(εα
v +μA)/kBT + e(εα

B+μA−μB)/kB T
. (38)

Because the number of atoms is free to vary, the overall
composition x of the alloy will be given by

1 − x

x
= (1 − x0) − cα

v − cα
B + cβ

A

x0 − cβ
v − cβ

A + cα
B

. (39)

To complete the specification of the problem, we impose the
Gibbs condition (at P = 0) relating the chemical potentials:

μi =
(

∂G

∂ Ni

)

P,T

⇒ G =
∑

i

μi Ni = U − T S. (40)

Given the various defect energies εi , then for a given alloy
concentration x and temperature T , we need to (numerically)
solve for the chemical potentials μi .

The calculated defect energies εi are not the same as the
thermodynamic defect formation energies, �H d

f , which are
defined for a constant number of atoms:

�H d
f =

(
∂G

∂ Nd

)

P,T,ni

. (41)
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Figure 6. (a) The heat of formation (per atom) around Zr3Al. Lowest solid (black) lines correspond to the tie lines connecting Zr3Al to Zr2Al
and pure Zr. The solid lines show the effect on the heat of formation of different defects as a function of concentration. The free energy at
T = 50 K (cyan dots) and at 1300 K (red dashed line) are also given. (b) The chemical potentials for Al and Zr as a function of concentration
at T = 50, 300 and 1300 K. The corresponding Gibbs free energies (dashed lines) are also given.

Table 1. Low-temperature defect formation energies (eV) for Zr3Al.

Al vacancy Zr vacancy Al antisite Zr antisite

Al-rich 2.61 2.02 0 1.32
Zr-rich 1.63 2.35 1.32 0

From the definitions, it is clear that the chemical potentials
enter the defect formation energies, e.g.

�H i
v = εi

v + μi (42)

�H B
α = εα

B + μA − μB. (43)

Stoichiometric defects may be pairs, triplets, etc, and will exist
at finite temperatures.

6.2. Energetics of Zr-rich Zr–Al alloys

Figure 6(a) gives the calculated heats of formations from the
supercell calculations for the various intrinsic defects in Zr3Al.
On both the Zr-and Al-rich sides, antisites are more stable
than vacancies, and thus one should expect that changes in
composition will be accommodated through antisites. Note
that the heat for Al antisites is more bound than the ideal
x = 3/4 system, i.e. the system gains energy by increasing the
Al concentration. Although it might be tempting to deduce that
there will be a broad concentration range on the Al-rich side,
this is not the case since the tie line connecting Zr2Al is even
more bound. As a general rule, to describe the thermodynamics
of a given phase, it is essential to also consider competing
phases.

The calculated Al and Zr chemical potentials as a function
of concentration are given in figure 6(b). The chemical
potentials are seen to depend on both x and T , and have
discontinuities (for T = 0) at x0. Since the chemical potentials
μi are measures of each component’s relative contribution to
the alloy heat, Al, as the minority component, is relatively
more important to the binding. Conversely, for Zr-rich alloys,
μZr > 0, indicating that increasing the concentration of Zr
in this part of the compositional range decreases the overall

Table 2. Low-temperature defect formation energies (eV) for Zr2Al
and hcp/bcc Zr.

Al-rich Zr-rich

Zr2Al site Vacancy Antisite Vacancy Antisite

Al 2c 2.45 1.38 1.53 0
Zr 2a 1.58 0 2.04 1.38
Zr 2d 2.36 1.07 2.82 2.46

Zr vacancy Al antisite
hcp Zr 2.02 0
bcc Zr 0.83 0

binding. These results demonstrate clearly that the often
invoked heuristic of dividing the total heat of formation evenly
among the constituents is too simplistic. Moreover, since
the chemical potentials can vary by several eV as a function
of concentration, the chemical potentials vary during the
growth process for approaches such as molecular beam epitaxy
(MBE), even though the external conditions remain constant.
This observation has important implications for the modeling
of growth and relating experimental conditions to quantities
that can be (easily) calculated.

The low-temperature defects for Zr3Al are given in
table 1. The compositional/constituent defects (those with zero
formation energy at T = 0) are antisites on both sides of
x0 = 3/4. Thus, at low temperatures, changes in stoichiometry
are accommodated by antisites, with few vacancies. As the
temperature increases, the concentration of vacancies, shown
in figure 7(b), also increases. In addition, the defect formation
energies of figure 7(a) are likewise temperature-dependent,
with the result that the non-constituent defects become more
likely, driven by the entropic contributions.

As seen in figure 7, at stoichiometry (x0 = 3/4)
defects also occur, but they must occur in groups in order to
maintain the correct composition. The simplest stoichiometric
complexes at x0 and their energies (per defect) are: (i) double
antisite (1 Zr antisite + 1 Al antisite): 0.66 eV; (ii) 3 Zr
+ 1 Al vacancies: 2.17 eV; (iii) Zr antisite complex (1 Zr
antisite + 4 Zr vacancies): 1.88 eV and (iv) Al antisite complex
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Figure 7. Calculated (a) defect formation energies (�G) and (b) defect concentrations for the intrinsic (vacancies, antisites) defects for Zr3Al
at T = 300 and 1300 K.

(3 Al antisites + 4 Al vacancies): 1.49 eV. Not surprisingly,
the double antisite is the most likely stoichiometric defect.
Moreover, note that these formation energies are the same
regardless of whether the Al- or Zr-rich individual defect
formation energies of table 1 are used, thus providing a
necessary consistency check on the formation energies.

From the calculated chemical potentials, defect concentra-
tions, etc, the free energy as a function of concentration around
x0 can be determined and are shown for T = 50 and 1300 K in
figure 6(a). For low temperatures, the free energy (adjusted to
agree with the T = 0 energy at x0) follows the antisite curves.
For high temperature (1300 K) and x > x0, the free energy
lies above the T = 0 tie line, indicating that Zr-rich alloys
are not expected in this structure. For the Al-rich part of the
phase diagram, the free energy lies below the T = 0 tie line to
Zr2Al, allowing for the possibility of Al-rich alloys. However,
to be consistent, it is necessary to consider the free energies
(and hence the intrinsic defects) of the competing phases, i.e.
Zr2Al and Zr.

The hP6 Zr2Al structure has two inequivalent Zr
sublattices. The statistical mechanics are treated using an
obvious generalization of the formalism described above; the
resulting defect formation energies are given in table 2. For Al-
rich alloys (x < x0), there is a strong site preference (∼1 eV)
for Al antisites on the 2a sublattice because that maximizes the
number of Zr neighbors for the additional Al atoms. On the
Zr-rich side (x > x0, towards Zr3Al), the preference is for Zr
antisites on the single Al sublattice.

For pure Zr, the observed low-temperature phase is hcp,
and then transforms at higher temperatures (830 K) to bcc, with
both phases showing significant ranges of Al solubility. Since
to change the concentration x requires the addition of Al, the
constituent defects for both phases are Al antisites, and the Al
chemical potentials are −0.88 and −0.64 eV for the hcp and
bcc phases, respectively, favoring the alloying of Al into pure
Zr. The cost for generating Zr vacancies is significantly lower
for bcc Zr compared to hcp. This cost, plus the accompanying
large (∼10%) relaxations for the bcc vacancy, are related to the
bcc lattice instabilities.

Combining the results from the calculations for Zr2Al,
Zr3Al and Zr, one can determine composition ranges. The

experimental maximum of the Al solubility limit in hcp Zr of
∼11% occurs at 1200 K. The calculated Al solubility limits
are around zero at room temperature, 0.1% at 600 K, 1.2% at
1000 K and 3.5% at 1300 K. While the trend of increasing
solubility is correct, the overall magnitude is too small. (There
is no calculated width for Zr-rich Zr3Al.)

In addition to the solubility limits issue, the calculated
energy differences between hcp and bcc Zr as a function of
temperature continue to favor hcp Zr far above the observed
transition. To resolve these discrepancies requires the inclusion
of vibrational entropy contributions.

To describe the disappearance of the Zr3Al phase at
∼1260 K—Zr3Al ↔ Zr2Al + βZr (with 12% Al)—we allow
for relative shifts of �G for different structures to account
for electronic and vibrational entropy contributions. The
electronic entropy contributions to the relative phase stability
of phase P relative to fcc Zr3Al, �Se = Se[P] − Se[Zr3Al],
are easily obtained from the standard electronic structure
calculations: 0.04kB for Zr2Al, 0.32kB for bcc Zr and 0.13kB

for hcp Zr. The requirements that, at T = 1300 K (i) bcc
Zr be more stable than hcp, (ii) Zr3Al is unstable to Zr2Al
and Zr, and (iii) the Al solubility is ∼10%, yields estimates
of the vibrational entropy differences, �SV , relative to Zr3Al
of 0.14kB for Zr2Al, 0.48kB for bcc Zr and 0.04kB for hcp
Zr, and with these values, the Zr–Al phase diagram at the Zr-
rich end (cf. figure 8) is correctly reproduced. The value
of �SV for bcc Zr is comparable to the Friedel estimate of
0.6kB between close-packed (fcc/hcp) and bcc structures, as
well as the experimental estimate of 0.5–0.6kB for the bcc–
hcp Zr transition. Moreover, since Zr2Al is not close-packed
(especially the 2a site), this value of �SV is also plausible. In
principle, the vibrational contributions to the free energies can
also be calculated directly, including for the defect structures,
but that is beyond the scope of the present paper.

Based on these results, a number of conclusions can be
drawn. Antisites are the compositional defects for Zr-rich
Zr–Al alloys, with few vacancies at normal temperatures;
and for Zr2Al, there is a pronounced site preference (2a)
for Al antisites. Proper treatment of intrinsic defects are
necessary to describe phase stability, with the composition
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widths depending on the properties of each individual phase,
plus the relative energies. The values of �SV extracted by
demanding that Zr3Al becomes unstable are reasonable.

7. Summary

The modifications and extensions described here (along with
others) make the FLAPW method, as implemented in flair [12],
easy to use and applicable to an ever wider variety of new
and complex materials. We have illustrated the utility of the
method by calculations of the induced densities in external
fields, magnetic coupling between core holes and valence
states, and the effect of intrinsic defects on the phase stability
of Zr–Al alloys. With the on-going development and an active
user base, the FLAPW approach will continue to play an
important role in materials design.
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